CAN LARGE dsDNA-CONTAINING VIRUSES PROVIDE INFORMATION ABOUT THEMINIMAL GENOME SIZE REQUIRED TO SUPPORT LIFE?
نویسنده
چکیده
The genomes of a few viruses, such as Bacillus megaterium phage G (670 kb) and the chlorella viruses (330 to 380 kb), are larger than the predicted minimal genome size required to support life (ca. 320 kb). A comparison of the 256 proteins predicted to be required for life with the putative 376 proteins encoded by chlorella virus PBCV-1, as well as those encoded by other large viruses, indicates that viruses lack many of these “essential” genes. Consequently, it is unlikely that viruses will aid in determining the minimal number and types of genes required for life. However, viruses may provide information on the minimal genome size required for life because the average size of genes from some viruses is smaller than those from free-living organisms. This smaller gene size is the result of three characteristics of virus genes: (1) virus genes usually have little intragenic space between them or, in some cases, genes overlap; (2) some virus-encoded enzymes are smaller than their counterparts from free-living organisms; and (3) introns occur rarely, if at all, in some viruses.
منابع مشابه
Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کاملTemperature effects on virion volume and genome length in dsDNA viruses.
Heterogeneity in rates of survival, growth and reproduction among viruses is related to virus particle (i.e. virion) size, but we have little understanding of the factors that govern the four to five orders of magnitude in virus size variation. Here, we analyse variation in virion size in 67 double-stranded DNA viruses (i.e. dsDNA) that span all major biomes, and infect organisms ranging from s...
متن کاملThe number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different ge...
متن کاملTraining Manual for Prevention of Covid-19 Disease among Hospital Personnel
Dear Editor In recent days, coronavirus disease (COVID-19) as a viral infection caused by the SARS-Cov-2 virus has become a pandemic disease and has created critical conditions worldwide [1]. According to previous studies on pathogenic viruses associated with acute respiratory distress syndrome, each virus has a specific virulence dose, which it is about 2×103-3×103 viral particles for the inf...
متن کاملAminoacylation of tRNAs encoded by Chlorella virus CVK2.
Viruses that infect certain strains of the unicellular green alga, Chlorella, have a large, linear dsDNA genome that is 330-380 kb in size; this genomic size is the largest known among viruses and is equivalent to approximately 60% of the smallest prokaryotic genome of Mycoplasma genitalium (580 kb). Besides many putative protein-coding genes, a cluster of 10-15 tRNA genes is present in these v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015